21st course of the International School of Cosmic-Ray Astrophysics – Erice, 2018 August 2-3

Cosmic-ray direct detection

Lecture I

Pier Simone Marrocchesi - Univ. of Siena and INFN Pisa

Overview

LECTURE-I:

- A brief historical introduction to cosmic rays
- Cosmic-ray detection: from balloons to space
- **o** Electron and positron measurements

LECTURE-II :

- Energy spectra of p, He, light nuclei, sub-Fe nuclei
- Secondary-to-Primary, Primary-to-Primary, Secondary-to-Secondary ratios
- Anti-protons
- Isotope flux ratios, propagation clocks, ultra-heavy nuclei
- A glimpse to future direct measurements of VHE cosmic rays

It all started with balloons!

In 1912 the Austrian physicist Victor Hess carried out measurements, at different altitudes in the atmosphere, of the intensity of the misterious ioning radiation that had been observed at sea level. Taking serious risks (no oxygen mask), he reached an altitude ~6500 m aboard a balloon and meaured an INCREASE of the radiation flux with altitude: just the OPPOSITE of what the current expectations were at the time !

GENERATION OF SHOWERS

 an example of a hadronics shower generated by a primary proton impinging on top of the atmosphere primary proton

~ 20 Km

GENERATION OF SHOWERS IN THE ATMOSPHERE

an example of the the electromagnetic component of an atmospheric shower

TT

 v_{μ}

 $\overline{\nu}_{\mu}$

Muons from the cascade decay with $\tau = 2.2$. μ s but $\gamma c\tau \sim 20$ Km for ~3GeV muons -> they can be seen at sea-level μ

v

e

P.S. Marrocchesi – 21th ISCRA School – Erice - 2018/8/2-3

Ground detection of Cherenkov light from atmospheric showers

Development of cosmic-ray air showers

Particle Physics was born AFTER the discovery of COSMIC RAYS

COSMIC RAYS: DIRECT AND INDIRECT MEASUREMENTS

SPACE-BORNE

- free-flyers (satellites)
- International Space Station (ISS)

BALLOON-BORNE

- Long Duration LDB
- Ultra Long (ULDB)

GROUND-BASED

- Air Cherenkov
- Extensive Air Shower
- Under-ground
- Under-water
- Under-ice

Direct measurements of cosmic rays

Two broad classes of instruments:

- Separation between positive and negative charges:
 - Magnetic spectrometers: permanent magnetization

- super-conducting coils

- measurement of momentum
- No sign-of-charge discrimination:
 - **Calorimeters** (mainly, but also TRDs)
 - measurement of energy

(*) another possibility: Fermi experiment uses the Earth magnetic field to separate the two charges, but at low rigidity

Measurement of momentum

(1)

UNIFORM MAGNETIC FIELD B

. THE DEFLECTION ANGLE 4 :

- . THE TRACK IS BENT IN THE "BENDING PLANE" ORTHOGONAL TO B
- . THE DEFLECTION ANGLE 4 OVER THE LENGTH L NEASURES THE TRANSVERSE MOHENTUM PT

 $\vec{P} = \vec{P}_T + \vec{P}_H$ $P_T = P \sin \Theta$

Golden's balloon-borne superconducting magnetic spectrometer

[Golden et al. 1984]

- Balloon flight in 1976 from Palestine, U.S.A.
- Exposure time = 19hr
- Altitude: ~5.8g/cm²
- $S\Omega = 324 \text{ cm}^2 \text{sr}$
- e⁻ (separated from e⁺)

 Flying a super-conducting magnet on a ballon or in space for a significant amount of time is a considerable technical challenge

An example: the complexity of the cryostat of the BESS-Polar II balloon experiment

P.S. Marrocchesi – 21th ISCRA School – Erice - 2018/8/2-3

Scientific ballooning

1990s

Extensive campaign of daily balloon flights operated by several groups

- Wizard (MASS, TS, CAPRICE)
- BESS
- Others (HEAT, IMAX...)

Main instrument characteristics

- Superconducting magnets (~1T field)
- MWPC & drift chamber tracking systems (0(100µm) resolution)
- MDR ~ 100 ÷ 300 GV

courtesy of E. Vannuccini ISSS-2017

Balloon-borne magnetic spectrometers

MASS-91

- Balloon flight in 1991
- From Fort Sumner, U.S.A.
- Exposure time = ~10hr
- Altitude = $\sim 5.8 \text{ g/cm}^2$
- $S\Omega = 182 \text{ cm}^2 \text{sr}$

[Grimani et al. 2002]

P.S. Marrocchesi – 21th ISCRA School – Erice - 2018/8/2-3

Balloon-borne magnetic spectrometers

CAPRICE94

- Balloon flight in 1994
 - From Lynn Lake, Canada
- Exposure time = ~18hr
- Altitude = $\sim 3.9 \text{ g/cm}^2$
- $S\Omega = ~170 \text{ cm}^2 \text{sr}$
- e-, e+ (separated)

[Boezio et al. 2000]

Balloon-borne magnetic spectrometers

HEAT

- Balloon flights in 1994,1995
 - From Fort Sumner, Lynn Lake
- Exposure time = 55hr
- Altitude = 5^{6} g/cm²
- $S\Omega = 495 \text{ cm}^2 \text{sr}$
- e-, e+ (separated)

[DuVernois et al. 2001]

P.S. Marrocchesi – 21th ISCRA School – Erice - 2018/8/2-3

Space-borne magnetic spectrometers

AMS-01

- Space shuttle in 1998
 51.7 deg orbit (Discovery)
- Exposure time = $\sim 1.8 \times 10^2$ hr
- Altitude: 320-390km
- $S\Omega = ~1.0 \times 10^3 \, \text{cm}^2 \text{sr}$
- e-, e+ (separated)

Propagation of cosmic-ray electrons in the Galaxy

- **Energy losses**:
 - Inverse Compton scattering with interstellar photons
 - Synchrotron radiation in the interstellar magnetic field ($B^{\sim}6\mu G$)
 - \Rightarrow dE/dt = -bE²
- Life time of electrons: $T=1/(bE) \approx 2.5 \times 10^{5} \text{yr}/E(TeV)$

Propagation

Constraints on High-Energy Cosmic-Ray Electron Observations

- TeV electrons from distant sources with
 - $R > \sim 1 kpc$ or $T > \sim 10^5 yr$
 - Cannot reach the solar system
- TeV electrons from nearby sources with
 - $R < \sim 1 kpc$ and $T < \sim 10^5 yr$
 - Identifiable structure(s) in the spectrum
 - Anisotropy of arrival direction of electrons
- *Precision measurements of the electron spectrum* is the key for the identification of cosmic-ray sources where electron acceleration takes place.

Acceleration of CR electrons

- Evidence of high-energy electrons in SNRs from X-ray observations
- Electron or hadron? from gamma-ray observations

Known Nearby SNRs

Energy spectra vs. diffusion coefficient

Energy spectra vs. diffusion coefficient

Cutoff in the energy spectrum of electrons at sources

Object	v _{rolloff}		$E_{\max}[(B/10\mu G)]^{1/2}$	
	(10 ¹⁶ Hz)	(keV)	(ergs)	(TeV)
Kes 73 ^a	150	6	290	200
Cas A	32	1	130	80
Kepler	11	0.5	79	50
Tycho	8.8	0.4	70	40
G352.7-0.1	6.6	0.3	60	40
SN 1006 ^b	6	0.2	57	40
3C 397	3.4	0.1	43	30
W49 B	2.4	0.1	36	20
G349.7+0.2	1.8	0.07	31	20
3C 396	1.6	0.07	30	20
G346.6-0.2	1.5	0.06	29	20
3C 391	1.4	0.06	28	20
SN 386 ^a	1.2	0.05	26	20
RCW 103 ^a	1.2	0.05	26	20

POLLOFE EDEOLENCY AND MAYNUM ELECTRON ENERCY LIDER

(Reynolds et al. 1999)

Higher cut-off energies => Higher flux in TeV region

Electron spectra vs. cut-off energies

Electron spectra vs. release time delay from SNR $T = 5 \times 10^3 \text{ yr}$ **K.Yoshida** 10^{4} $E_c = 20 \text{TeV}, \tau = 5 \times 10^3 \text{yr}$ Rockstroh et al. (Radio) 1978 Golden et al. 1984 sr⁻¹ GeV²) $D_0 = 2 \times 10^{29} (\text{cm}^2 \text{s}^{-1})$ Tang 1984 Golden et al. 1994 Kobayashi et al. 1999 Distant component excluding $T \le 1 \times 10^5$ yr and $r \le 1$ kpc 10^{3} Boezio et al. 2000 $E^3 J$ (electrons m⁻² s⁻¹ DuVernois et al. 2001 Torii et al. 2001 Aguilar et al. 2002 Vela 10² Monogem Cygnus Loop 10^{1} 10^{2} 10^{3} 10^{1} 10^{4} 10^{5} 10^{0} Electron Energy (GeV)

e⁺, e⁻ from Dark Matter annihilation ?

- Distinctive spectral structures expected from D.M. annihilation
- Dark matter searches via e⁻,e⁺ observations

Indirect dark matter search with electrons

Simulated e^++e^- spectrum for 2yr from Kaluza-Klein dark matter annihilations with m = 620GeV and BF=40.

Simulated e⁺+e⁻ spectrum for 2yr from decaying dark matter for a decay channel of D.M.-> $|^+|^-\nu$ with: M = 2.5TeV τ = 2.1x10²⁶ s

Observations of High-Energy Electrons

- Direct electron observations since 1960's
 - Daniel&Stephens 1965, Bleeker 1965,...
- As the energy increases:
 - Lower electron flux (falls as E⁻³)
 - Larger proton backgrounds (of order 10³ to 10⁴)
- Requirements for the experiments:
 - Large geometrical factor (S Ω) (from tens of cm²sr to m²sr ?)
 - Long exposures (from several tens of days on ballons to years in space ?)
 - High proton rejection power (of order10⁵)
- Let's cast an historical look at the instrumentation in the 80's and at the very important advances achieved since then.

Cosmic-ray electron observations in different energy domains

- < 10 GeV
- Solar modulation
- E = 10 GeV-1000 GeV
 - Propagation in the Galaxy
 - Information on sources
 - Dark matter search

- Variation of the flux: factor 2~3
- Few observations above 100 GeV region

- E > 1 TeV
 - Identification of cosmic-ray source(s)
 - Dark matter search
 - Acceleration mechanism(s)
The era of passive imaging instruments

- 13 Balloon flights in 1968-2001
 From Sanriku, Japan, etc.
- Exposure time = 270hr
- Altitude = $\sim 4-9 \text{ g/cm}^2$
- $S\Omega = ~3.8 \times 10^3 \, \text{cm}^2 \text{sr}$
- e- + e+ (no separation)

Modern CR Instrumentation in a nutshell

Modern **active** cosmic-ray experiments have a large number of electronics channels therefore power budget is a constant concern in the design.

Charged Particle Tracking, first implemented with **MWPC** and **drift chambers**, has evolved with the more frequent use today of:

- silicon strip detectors
- silicon pixel detectors
- straw tubes (mainly in TRD detectors)
- scintillating fibers readout by segmented photosensors including:
 - **MAPMT** = Multi-Anode PMT
 - **HPD** = Hybrid Photo-Diode
 - **APD** = Avalanche PhotoDiode;
 - **PD** = PhotoDiode;
 - **SiPM** = Silicon PhotoMultiplier;
 - **MCP** = Micro Channel Plate
 - **ICCD** = Image Intensified CCD

Silicon Position Sensitive Detectors

segmented ELECTRODES

single-sided Si-strip single cooordinate

double-sided Si-strip detectors measure 2 cooordinates

Pixel detectors

measure 2 cooordinates (fast readout but large number of channels)

For PID based on **charge detectors** the pixel size has to be optimized to avoid misidentification due to backscattered radiation (predominantly from the calimeter) impinging on the same pixel crossed by the primary particle.

Micro-strip silicon detectors in PAMELA

Spatial resolution:

- junction side (X): 3 μm @0°, < 4 μm up to 10°
- ohmic side (Y) 8÷13 μm

courtesy of E. Vannuccini ISSS-2017

The AMS-02 tracking system

- 0.15 T magnetic field @ center
- $\sim 10~\mu m$ resolution on the bending direction
- ~ 3 m track-length

 \rightarrow MDR ~ 2 TV

Magnetic spectrometers are limited by their Maximum Magnetic Rigitidy (MDR) to a few TeV while e.m. calorimeters have good resolution in the multi-TeV region

E.M. CALORIMETERS: ENERGY RESOLUTION

Energy resolution, $\sigma_{\rm E}/{\rm E}$, can be parametrized as

 $a/\sqrt{E}\oplus b\oplus c/E$ E in GeV

• a/E^{1/2} = stochastic term: statistical fluctuations
 (photostatistics, sampling fluctuations, shower fluctuations..)

For sampling calorimeters a = $\sqrt{t/f}$. (f = sampling fraction , t = sampling frequency). A few % for homogeneous calorimeters and about 10% for sampling calorimeters.

• **b** = constant term due to calibration, non uniformity of calorimeter etc... STABILITY vs. time of calibrations is important.

• c/E = electronics noise contribution summed on all readout channels. Includes contribution from PILEUP.

Homoge	eneous calorimeters:	absorber is the active	e medium for detection
Incoming electron/photon	Photodetector	Absorber detector e.g.: BGO, CsI crystals, Lead Glass etc	crystal calorimeters are more expensive

alternate structure absorber + active medium

Sampling calorimeters:

- Shower sampled by layers of active media (low-Z) alternated with dense (high-Z) passive absorbers •
- Only a fraction of the shower energy is collected by the active media ٠
- Energy resolution affected by <u>fluctuations in energy deposited in the active layers</u>: **sampling fluctuations** ٠ P.S. Marrocchesi – 21th ISCRA School – Erice - 2018/8/2-3

cost effective

ELECTROMAGNETIC SHOWERS

When an electron/positron/photon interacts with matter a cascade of e^+e^- , γ is initiateu.

Simple model for average shower properties, assuming $1 X_0$ as generation length:

- electrons lose ~2/3 of their E
- high energy photons: 7/9 probability to convert into one e⁺e⁻ pair

In each generation the number of charged particles doubles

Define the scale variables:
$$t = x/X_o$$

 $y = E/E_c$

ABSORBER

<u>thickness</u> in **radiation length** (X₀) units deposited energy in units of critical energy

After t–generation: average energy/particle drops below E_c and shower growth drops.

Average number of particles:

Average energy of a shower particle

Shower maximum (log E dependence)

$$N(t) \sim 2^{t}$$

$$N(t) \sim E_{o} / 2^{t}$$

$$t_{max} \sim \ln(E_{o} / E_{c}) / \ln 2$$

E.M. SHOWERS: LONGITUDINAL PROFILE

E.M. SHOWERS: LATERAL PROFILE

Molière radius sets transverse shower size, it gives the average lateral deflection of critical energy electrons after traversing 1X₀

$$\mathbf{R}_{\mathrm{M}} = \frac{21 \mathrm{MeV}}{\mathrm{E}_{\mathrm{C}}} \mathbf{X}_{\mathrm{0}} \qquad \mathbf{R}$$

$$R_M \propto \frac{X_0}{E_C} \propto \frac{A}{Z} (Z >> 1)$$

90% E_0 within $1R_M$, 95% within $2R_M$, 99% within $3.5R_M$

Balloon-borne calorimetric experiments

- Geometrical factor: 0.45 m² sr (calorimeter top) to 0.24 m² sr (calorimeter bottom)
- 3 successful antarctic flights: 2000, 2002, 2007 (~57 days in total)

P.S. Marrocchesi – 21th ISCRA School – Erice - 2018/8/2-3

Si-Matrix: 4480 pixels (each 2 cm x 1.5 cm) to measure GCR charge in presence of backscattered shower particles.

ATIC

Plastic scintillator hodoscope, embedded in Carbon target, provides event trigger, charge and particle tracking.

Calorimeter: 10 layers BGO crystals, 40 per layer. Total depth 22 X_0 , 1.14 λ . Measure the electromagnetic core of the nuclear shower.

Advanced Thin Ionization Calorimeter (ATIC)

J.H. Adams², H.S. Ahn³, G.L. Bashindzhagyan⁴, K.E. Batkov⁴, J. Chang^{6,7}, M. Christl², A.R. Fazely⁵, O. Ganel³, R.M. Gunasingha⁵, T.G. Guzik¹, J. Isbert¹, K.C. Kim³, E.N. Kouznetsov⁴, M.I. Panasyuk⁴, A.D. Panov⁴, W.K.H. Schmidt⁶, E.S. Seo³, N.V. Sokolskaya⁴, J. Watts, J.P. Wefel¹, J. Wu³, V.I. Zatsepin⁴

1) Louisiana State University, Baton Rouge, LA, USA

- 2) Marshall Space Flight Center, Huntsville, AL, USA
- 3) University of Maryland, College Park, MD, USA
- 4) Skobeltsyn Inst. of Nucl. Phys., Moscow State Univ., RU
- 5) Southern University, Baton Rouge, LA, USA
- 6) Max Plank Institute für Space Physics, Lindau, Germany
- 7) Purple Mountain Observatory, China

Balloon-borne calorimetric experiments

BETS

- Balloon flights in 1997,1998
 From Sanriku, Japan
- Exposure time = ~13hr
- Altitude = ~5~6g/cm²
- $S\Omega = ~320 \text{ cm}^2 \text{sr}$
- e- + e+ (no separation)

Balloon-borne calorimetric experiments

- > 3 independent charge measurements
- Timing-based Charge Detector (TCD)
- Pixelated Silicon Detector (SCD)
- Cerenkov counter (CD) and Camera (w/o TRD)
- 2 independent energy measurements + tracking
- Transition Radiation Detector (Z > 3)
- Tungsten Sci-Fi calorimeter ($Z \ge 1$)

> GF ~ 0.3 m² sr for Z=1,2; ~ 1.3 m² sr for Z>3

Silicon Charge Detector (SCD)

particle-ID by charge measurement from Z = 1 to Z ~ 33 (σ ~ 0.1 - 0.2 e)

- 2 layers of sensors
- pixel size ~ 2.1 cm^2
- 16 pixels per sensor
- 380 mm thick Si sensor
- depletion at 70 V
- Active area per layer $\sim 0.52\ m^2$
- 2496 chans/layer were readout

Tungsten Scintillating-Fibers Sampling Calorimeter

Preceded by a graphite target (~ 0.5 λ_{INT}) to induce an hadronic interaction Active area 50 x 50 cm² : 2560 channels (3 gain ranges) readout by 40 HPDs Longitudinal sampling : 3.5 mm Tungsten (1 X₀) + 0.5 mm SciFi ribbons Total of 20 layers (20 X₀ ~ 0.7 λ_{INT}) alternate x-y views Transverse granularity : scintillating fiber ribbons 1 cm ~ 1 Moliere radius

Charge measurement with SCD

Excellent charge resolution: ~ 0.2 e from C to Si

Flight I: Dec 2004 - Jan 05

- 42 days Balloon Record at that time
- (54 days by ULDB, now 55 days by Super-TIGER in 2013)
- ~ 40 million Hi-Z Triggers

CREAM flights

Six Flights: ~161 days cumulative exposure

From balloon flights to space

Nowadays direct measurements of electron + positron fluxes are carried out in space by experiments that can provided the required **LARGE EXPOSURE**

(e.g.: PAMELA, AMS, FERMI, CALET, DAMPE)

PAMELA launched on 15th June 2006 – satellite mission

GF: 21.5 cm² sr Mass: 470 kg Size: 130x70x70 cm³ **Power Budget: 360W**

Elliptical orbit 350 - 610 km 70° inclination in operation at 560 km

Time-Of-Flight

plastic scintillators + PMT: Trigger

- Albedo rejection;
- Mass identification up to 1 GeV;
- Charge identification from dE/dX

Electromagnetic calorimeter

W/Si sampling (16.3 X_0 , 0.6 λ I) Discrimination e + / p, anti-p/e⁻

(shower topology)

- Direct E measurement for e⁻

Neutron detector

³He tubes + polyethylene moderator: - High-energy e/h discrimination

- Charge value from dE/dx

ALPHA Magnetic Spectrometer (AMS) on the ISS - launched in 2011

Charged cosmic-ray leptons

electron and positron direct measurements

PAMELA (2009) : first unambiguous evidence of the rise of the **positron fraction** $e^+/(e^-+e^+)$ above 10 GeV

Anisotropy in e⁺ and e⁻ data

> PAMELA

Study of arrival directions of e⁺ and e⁻ taking into account the effects of the Earth's geomagnetic field:

- No anisotropy observed at all angular scales
- δ = 0.076 at 95% confidence level

[Panico @ICRC 2015]

PAMELA Significance sky maps

AMS-02 (preliminary 2018)

AMS has measured the e+ anisotropy in the energy range from 16 GeV

to 350 GeV as being consistent with isotropy

AMS results on the Positron Fraction

Measurements of the Electron and Positron spectra

Fluxes of e⁺, e⁻, p and anti-p as measured by AMS-02

- Above ~60 GV the rigidity dependence of e⁺, p and anti-p are almost identical
- BUT electrons behave differently.

The CR leptonic sector puzzle (observations)

- (1) <u>Positron spectrum</u>: *harder than e⁻* above 50 60 GeV and has *similar Rigidity dependence as proton (and anti-proton).* Incompatible with secondary origin since at these energies radiative losses are dominant during propagation.
- 2 <u>Electron spectrum</u>: *featureless* above 30 GeV up to ~ 1 TeV and *steeper than* e^+
- Inclusive e⁺ + e⁻ spectrum: direct measurements < 1 TeV => power law index ~ -3.17 Spectrum above 1 TeV from HESS (indirect Cherenkov measurement in the atmosphere) FERMI data + new direct measurements by CALET and DAMPE.
- (4) Anisotropy in e⁺ and e⁻ data: no anisotropy observed at all angular scales by PAMELA

Electron measurements at high energy are challenging due to the large proton background. High proton rejection power (> 10⁵) is required.

A sample of Theoretical Models explaining AMS data

<u>The positron excess puzzle</u> (theoretical interpretations)

♦ Positron excess from Astrophysical sources including:

- Pulsar Wind Nebulae (PWN) where the pulsar produces e⁺e⁻ pairs
 + acceleration away from the neutron star (at termination shock)
- SuperNova Remnants (SNR) for a recent eview e.g.: [P.Serpico, Astropart. Phys. 39-40, 2]
- Local source(s): order 0.1% anisotropy expected at ~ 100 GeV

Astrophysical interpretation(s)

- try to fit simultaneously all observables with a single model.
- Large number of papers. An example below from [M.Di Mauro @ICRC2015] :

WANTED ! electron spectrum above 1 TeV

Precision measurements expected from new missions CALET and DAMPE

P.S. Marrocchesi – 21th ISCRA School – Erice - 2018/8/2-3

P.S. Marrocchesi – 21th ISCRA School – Erice - 2018/8/2-3

Calorimetric Electron Telescope

CALET

CALET

- **1040** cm²sr for electron, proton
- **4000** cm²sr for ultra-heavy nuclei
- ΔE/E :

JAXA

~2% (>10 GeV) for e, gamma ~30-35 % for protons, nuclei

- e/p separation : ~10⁻⁵
- Charge resolution : 0.15 0.3 e
- Charge range: up to Z = 40
- Angular resolution :
 - 0.2° for gamma-rays > ~50 GeV

CALET Payload

Launched on Aug. 19th, 2015

- by the Japanese H2-B rocket
- Power: 507 W (max)
- Telemetry: Medium 600 kbps (6.5GB/day)

CALET: a unique set of key instruments.

CHD-FEC

COLUMN A.

IMC-FEC

TASC-

TASC: a thick, homogeneous calorimeter allows to extend electron measurements into the TeV energy region with ~2% energy resolution.

CHD

IMC

TASC

- IMC: a high granularity (1mm) imaging pre-shower with tracking capabilities identifies the starting point of electromagnetic showers.
- TASC+IMC (30 X_o, 1.3 $\lambda_{\rm I}$) provide a strong rejection power ~10⁵ to separate electrons from the abundant protons.
- **CHD: a charge detector** combined with multiple dE/dx samples from IMC identifies individual elements.

P.S. Marrocchesi – 21th ISCRA School – Erice - 2018/8/2-3

DAMPE

Dark Matter Explorer Satellite (Launched on Dec 17, 2015)

- Large geometric factor instrument (0.3 m² sr for p and nuclei)
- Precision Si-W tracker (40 μm , 0.2°)
- Thick calorimeter (32 $\rm X_0$, $\sigma_{\rm E}/\rm E$ better than 1% above 50 GeV for e/ γ , ~35% for hadrons)
- "Mutiple" charge measurements (0.2-0.3 e resolution)
- e/p rejection power > 10⁵ (topology alone, plus neutron detector)

Comparison with AMS-02 and FERMI

	DAMPE	AMS-02	Fermi LAT
e/γ Energy res.@100 GeV (%)	1.5	3	10
e/γ Angular res.@100 GeV (°)	0.1	0.3	0.1
e/p discrimination	10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	32	17	8.6
Geometrical accep. (m ² sr)	0.29	0.09	1

[I. De Mitri, LNGS 2015]

- Satellite ≈ 1900 kg, payload ≈1300kg
- Power consumption ≈640W
- Lifetime > 3 years
- Launched by CZ-2D rockets

- Altitude 500 km
- Inclination 97.4°
- Period 95 minutes
- Sun-synchronous orbit

The DAMPE Detector

W converter + thick calorimeter (total 33 X_0) + precise tracking + chargemeasurement high energy gamma-ray, electron and CR telescope

Measurements of the electron spectrum

Comparison of CALET with DAMPE and other experiments in space

Extended Measurement by CALET

Approximately doubled statistics above 500GeV by using full acceptance of CALET

Extended Measurement by CALET

Approximately doubled statistics above 500GeV by using full acceptance of CALET[11 GeV, 4.8 TeV]

Comparison of CALET and DAMPE

